

The Mars 2020 Lander Vision System: Architecture and V&V Results IPPW 209

J. Montgomery¹, A. Johnson¹, H. Ansari¹, C. Bergh¹,

J. Chang¹, Y. Cheng¹, S. Mohan¹, S. Schroeder¹,

A. Stehura¹, N. Trawny¹, N. Villaume¹, J. Zheng¹

¹Jet Propulsion Laboratory, California Institute of Technology

9 July, 2019

Terrain Relative Navigation

TRN enables access to hazardous landing sites

TRN Component Architecture

Lander Vision System (LVS) Overview

Vision Compute Element

Flight RAD750 Processor (3U) 132Mz Version

Flight CEPCU1 power conditioning card (6U)

6U cPCI 3 slot chassis

and backplane

Jet Propulsion Laboratory

New Computer Vision Accelerator Card (CVAC) (6U)

- VCE delivered and mechanically integrated with the spacecraft
- The Vision Compute Element (VCE) is a 3 slot 6U processor
 - BUILD TO PRINT: RAD750 general purpose processor
 - BUILD TO PRINT: power conditioning card VCEPCC)
 - NEW: Computer Vision Accelerator Card (CVAC)
 - RTAX2000 housekeeping FPGA
 - reprogrammable Virtex5 FPGA
 - heat strap for thermal management
 - flash memory

LVS Camera

- LCAM delivered to spacecraft integration
- LCAM Built by a Malin Space Science Systems
 - proven Mars camera vendor
- LCAM Specs
 - 1024 x 1024 pixels, 89° x 89° FOV
 - 480nm-720nm sensitivity
 - <100 msec image latency, 300us exposure time
 - 8-bit per pixel, >70 signal-to-noise ratio
 - -40C to +70C qual temp
 - power <4.0W, mass 0.865 kg

placement on rover

TRN V&V Approach

- Based on TDS V&V program, same "Trifecta" approach
- Testing philosophy
 - Test As You Fly (TAYF)
 - Stress Testing
 - Worry Beads
- Varying degrees of hardware and software behavioral fidelity
 - LVS, LCAM, and map models
 - EDL/GNC FSW Core (incl. STS)
 - From LVSTS through flight HWIL
- Validation
 - Field tests
 - Multiple Mars datasets

L5 – L6 V&V Relationships

LVS I&T/V&V Venue Overview

"Elvinator" with Gimbal Moving

Landmark Matches with Gimbal Moving

Map
(cropping of larger map happens for every fine image)

LCAM Image (motion on gimbal)

Helicopter Test Flight – Death Valley May 20, 2019

Kelso Sand Dune Result AM (KSD_03)

Hole In Wall Example over 300m Cliffs

LVS V&V Status

		VENUE							
VnV Level	Unit Analysis &Test	Simulations			LVS	Hardware Testing			
		VCE FPGA Sim	VCEWSTS	LVSTS	Field Test	VCE Bench	VCEFSWTB	LVSTB	ETL
L5 LVS				Not Begun	Complete			In Progress	
L6 GSE						Complete		Complete	
L6 MRL			In Progress				In Progress		
L6 VCEFSW	In Progress		In Progress				In Progress		
L6 MAP	In Progress								
L6 VCE						Complete			Complete
L7 CVAC						Complete			
L8 HK & VP FPGA		Complete							
L6 LCAM	Complete								
DIMU	Complete								

Mars 2020 Project

BACKUP

LVS Data Flow & Processing

List of Verification Activities

VA ID	Name	R4R Venue
318781	LVS Functional and Interfaces	LVSTB
318782	LVS Performance Test	LVSTB
595915	LVS Off-Nominal	LVSTB
319445	LVS Performance Analysis	LVSTS
595978	LVS Field Test	Helicopter

LVS Functional & Interfaces VA

Mars 2020 Project

- Description
 - Test LVS functionality and interfaces and show performance as expected
- Objectives
 - Verify LVS functionality by phase (Cruise, EDL and Surface)
 - Verify LVS internal interfaces
 (VCE <-> LCAM) and external interfaces
 (LVS <-> RCE) perform as required
- R4R Venue
 - LVSTB-2
 - Configuration
 - VCE EM + GSE
 - EM LCAM, EM DIMU
 - VCEFSWE 3.2
 - S/C bus model

Success Criteria

- LVS functional tests
 - All LVS functionality for all phases performs as required
- LVS interfaces tests
 - All interfaces, power and data, perform as required
- Test Cases
 - 1553, ICC/ITC, DIMU, LCAM data interfaces
 - VCE and LCAM power interfaces
 - Phase specific functionality
 - Cruise: LVS checkout, updates of VCEFSWE image, VP FPGA image, map and parameters
 - EDL: All non-MRL EDL functionality
 - · Surface: Data product retrieval
 - Sensor functionality
 - DIMU, LCAM
 - HWIL testing
 - Spacecraft commands and LVS telemetry (EVRs, EHA)

LVS Performance Test VA

Mars 2020 Project

Description

Execute a series of hardware tests to verify
 and validate that LVS performs required
 functionality within time, accuracy and
 latency requirements

Objectives

- Verify Map Relative Localization (MRL) meets time and accuracy requirements
- Verify LVS boot, shutdown and MRL initiation meet time requirements
- Verify all latencies are within requirements
- Validate LVS performance as expected

R4R Venue

- LVSTB-2
- Configuration
 - VCE EM + GSE
 - EM LCAM, EM DIMU
 - VCEFSWE 3.2
 - · Gimbal and target board
 - S/C bus, S/C-GN&C, DIMU, LCAM, MAP and heatshield models
 - Motion Trajectory Generator

Success Criteria

 LVS performs require functionality within time, accuracy and latency requirements

- Map Relative Localization Performance
 - Reduced and Nominal
- Boot, Shutdown and MRL Initiation Time Performance
 - Nominal boot, fast reboot, time to shutdown and MRL initiation time within operational envelope
- Latency Tests
 - Transition to transmitting measurement packets, measurement packet latency, LCAM image latency

LVS Off-Nominal VA

Mars 2020 Project

Description

 Execute a series of tests that create offnominal conditions and examine LVS response to those conditions

Objectives

- Verify correct operation of watchdog timers
- Verify LVS responds as expected to various software and hardware failures
- R4R Venues
 - LVSTB-2, LVSTS
 - Configuration
 - VCE EM + GSE
 - EM LCAM, EM DIMU
 - VCEFSWE 3.2
 - S/C bus, S/C-GN&C, DIMU, LCAM, MAP and heatshield models
 - Motion Trajectory Generator

Success Criteria

 LVS performs as expected in response to off-nominal conditions

- Watchdog Timers
 - VCEFSWE, VCE Remote Terminal
- VCE Failures
 - Unrecoverable error response, VP FPGA auto-load failure recovery
- LCAM Failures
 - Unresponsive LCAM
 - Bad LCAM image (replicated, corrupted, lost)
- DIMU Failures
 - Bad DIMU data (replicated, corrupted, lost)
- VCEFSWE Failure
 - Incorrect execution failure response (missing tasks, non-responsive tasks)
- MRL Failure to Produce Solution
 - LCAM image exposure adjustment, retry COARSE mode
- Spacecraft Initialization Packet Failures
 - Bad spacecraft initialization packet (replicated, corrupted, lost)

LVS Performance Analysis VA

Mars 2020 Project

Description

 Execute a series of Monte Carlo simulations to verify performance of LVS over and beyond its operational envelope during EDL

Objectives

- Verify LVS performance meets requirements given expected initialization and operational uncertainty
- Develop statistical measure of LVS performance, including sensitivity to dispersed initialization and operating conditions
- Validate LVS performance as expected

R4R Venue

- LVSTS
- Configuration
 - VCESim (VCE device model)
 - S/C bus, S/C-GN&C, DIMU, LCAM, MAP and heatshield models
 - Motion trajectory generator
 - VCEFSWE 3.2
 - S/C bus model

Success Criteria

 LVS performance as required over conditions that span the LVS operational envelope during EDL

- Nominal Zero Mean, used as starting point for sensitivity studies
- Sensitivity Studies, provides performance assessment for various parameters over and beyond operational envelope
- Worst Case Studies, provides performance assessment over worst case in operational envelope

LVS Field Test VA

Mars 2020 Project

Description

 Execute Captive Carry helicopter field test in a real-world environment over Mars-relevant terrain with higher-fidelity flight dynamics than can be achieved in a lab environment

Objectives

- Perform a statistically significant number of real-time LVS position estimations in flight
 - for comparison against LVSTS position estimates
 - · for sensitivity studies
- Collect synchronized LCAM, DIMU and ground truth data that spans the LVS operation envelope
 - · for sensor model certification
 - for V&V of flight delivery with vertical motion
- Perform end-to-end LVS processing in flight
 - for test as you fly
- Perform off-nominal testing and collect offnominal data
 - for on-line & off-line fault protection testing

R4R Venue

- Helicopter
- Configuration
 - VCE EDU4 + GSE
 - EM LCAM, EM DIMU
 - VCEFSWE 3.1
 - Gimbal
 - S/C bus model
 - GPS/INS

Success Criteria

- LVS meets required EDL functionality and performance within time and latency requirements
- LVSTS certified successfully

- Map Relative Localization Performance
 - Reduced and Nominal